Evolving expression patterns of the homeotic gene Scr in insects.
نویسندگان
چکیده
While the mRNA expression patterns of homeotic genes have been examined in numerous arthropod species, data on their protein accumulation is extremely limited. To address this gap, we analyzed the protein expression pattern of the hox gene Sex combs reduced (Scr) in six hemimetabolous insects from four divergent orders (Thysanura, Orthoptera, Dictyoptera and Hemiptera). Our comparative analysis reveals that the original domain of SCR expression was likely confined to the head and then subsequently moved into the prothorax (T1) in winged insect lineages. The data also show a trend toward the posteriorization of the anterior boundary of SCR expression in the head, which starts in the mandibles (Thysanura) and then gradually shifts to the maxillary (Orthoptera) and labial segments (Dictyoptera and Hemiptera), respectively. In Thermobia (firebrat) and Oncopeltus (milkweed bug) we also identify instances where SCR protein is not detected in regions where mRNA is expressed. This finding suggests the presence of a post-transcriptional regulatory mechanism of Scr in these species. Finally, we show that SCR expression in insect T1 legs is highly variable and exhibits divergent patterning even among related species. In addition, signal in the prothoracic legs of more basal insect lineages cannot be associated with any T1 specific features, indicating that the acquisition of SCR in this region preceded any apparent gain of function. Overall, our results show that Scr expression has diverged considerably among hemimetabolous lineages and establish a framework for subsequent analyses to determine its role in the evolution of the insect head and prothorax.
منابع مشابه
Evolution of the insect body plan as revealed by the Sex combs reduced expression pattern.
The products of the HOM/Hox homeotic genes form a set of evolutionarily conserved transcription factors that control elaborate developmental processes and specify cell fates in many metazoans. We examined the expression of the ortholog of the homeotic gene Sex combs reduced (Scr) of Drosophila melanogaster in insects of three divergent orders: Hemiptera, Orthoptera and Thysanura. Our data refle...
متن کاملNovel regulation of the homeotic gene Scr associated with a crustacean leg-to-maxilliped appendage transformation.
Homeotic genes are known to be involved in patterning morphological structures along the antero-posterior axis of insects and vertebrates. Because of their important roles in development, changes in the function and expression patterns of homeotic genes may have played a major role in the evolution of different body plans. For example, it has been proposed that during the evolution of several c...
متن کاملThe evolving role of Hox genes in arthropods.
Comparisons between Hox genes in different arthropods suggest that the diversity of Antennapedia-class homeotic genes present in modern insects had already arisen before the divergence of insects and crustaceans, probably during the Cambrian. Hox gene duplications are therefore unlikely to have occurred concomitantly with trunk segment diversification in the lineage leading to insects. Availabl...
متن کاملInteractions of the Tribolium Sex combs reduced and proboscipedia orthologs in embryonic labial development.
The role of Hox genes in the development of insect gnathal appendages has been examined in three insects: the fruitfly, Drosophila melanogaster; the milkweed bug, Oncopeltus fasciatus; and the red flour beetle, Tribolium castaneum. In each of these organisms, the identity of the labium depends on the homeotic genes Sex combs reduced (Scr) and proboscipedia (pb). Loss of pb function in each of t...
متن کاملHomeotic genes have specific functional roles in the establishment of the Drosophila embryonic peripheral nervous system.
The Drosophila embryonic peripheral nervous system (PNS) contains segment-specific spatial patterns of sensory organs which derive from the ectoderm. Many studies have established that the homeotic genes of Drosophila control segment specific characteristics of the epidermis, and more recently these genes have also been shown to control gut morphogenesis through their expression in the visceral...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The International journal of developmental biology
دوره 54 5 شماره
صفحات -
تاریخ انتشار 2010